A (semi-)parametric Functional Coefficient Autoregressive Conditional Duration Model
نویسندگان
چکیده
In this paper, we propose a class of ACD-type models that accommodates overdispersion, intermittent dynamics, multiple regimes, and sign and size asymmetries in financial durations. In particular, our functional coefficient autoregressive conditional duration (FC-ACD) model relies on a smooth-transition autoregressive specification. The motivation lies on the fact that the latter yields a universal approximation if one lets the number of regimes grows without bound. After establishing that the sufficient conditions for strict stationarity do not exclude explosive regimes, we address model identifiability as well as the existence, consistency, and asymptotic normality of the quasi-maximum likelihood (QML) estimator for the FC-ACD model with a fixed number of regimes. In addition, we also discuss how to consistently estimate using a sieve approach a semiparametric variant of the FC-ACD model that takes the number of regimes to infinity. An empirical illustration indicates that our functional coefficient model is flexible enough to model IBM price durations. JEL CLASSIFICATION: C22, C41.
منابع مشابه
Functional-Coefficient Autoregressive Model and its Application for Prediction of the Iranian Heavy Crude Oil Price
Time series and their methods of analysis are important subjects in statistics. Most of time series have a linear behavior and can be modelled by linear ARIMA models. However, some of realized time series have a nonlinear behavior and for modelling them one needs nonlinear models. For this, many good parametric nonlinear models such as bilinear model, exponential autoregressive model, threshold...
متن کاملAnalysing farmland rental rates using Bayesian geoadditive quantile regression
Empirical studies on farmland rental rates have predominantly concentrated on modelling conditional means using spatial autoregressive models, where a linear functional form between the response and the covariates is usually assumed. However, if it is in fact non-linear, misspecifying the functional form can adversely affect inference. While mean regression models only allow limited insights in...
متن کاملFunctional Coefficient Autoregressive Nonlinear Time-series Model for Describing Indian Lac Export Data
INTRODUCTION Box Jenkins’ linear autoregressive integrated moving average (ARIMA) methodology is widely used for analyzing time-series data. Beyond ‘linear’ domain, there are many nonlinear forms to be explored. In fact, nonlinear time-series analysis has been one of the major areas of research in Time-series analysis for more than two decades now. These models are generally more appropriate th...
متن کاملSpecification Tests for Nonlinear Time Series Models
This paper proposes a new parametric model adequacy test for possibly nonlinear time series models such as generalized autoregressive conditional heteroskedasticity (GARCH) and autoregressive conditional duration (ACD). We consider the correct specification of parametric conditional distributions, not only some particular conditional characteristics. Using the true parametric conditional distri...
متن کاملFrontiers in Time Series and Financial Econometrics: An Overview
Two of the fastest growing frontiers in econometrics and quantitative finance are time series and financial econometrics. Significant theoretical contributions to financial econometrics have been made by experts in statistics, econometrics, mathematics, and time series analysis. The purpose of this special issue of the journal on “Frontiers in Time Series and Financial Econometrics” is to highl...
متن کامل